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Abstract. For a modified Lennard-Jones interaction potential of the form ∼[(r0/r)2n−2 − (r0/r)n], an
exact and simple expression for the s-wave scattering length is presented, and discussed in some detail. For
heavy alkali atoms, which nowadays are routinely being employed to produce Bose-Einstein condensates,
this potential is well compatible with known experimental data when n = 6.

PACS. 03.65.Nk Scattering theory – 34.20.Cf Interatomic potentials and forces

1 Introduction

When ultracold atoms scatter from each other, with
de Broglie waves much longer than the extension of their
interaction potential, knowledge of the full differential
cross section is not required for a description of the scat-
tering dynamics; it rather suffices to consider the s-wave
scattering length ascatt. This is reflected, for instance, by
the fact that the leading terms of a density expansion
of the ground-state energy of a Bose-Einstein condensate
depend on the scattering length only [1–3]; non-universal
contributions which do depend on the actual shape of the
interaction potential emerge only in higher orders [4,5].

The relative motion of two particles is as usually de-
scribed by the equivalent Schrödinger equation

Eϕ = − �
2

2m
∆ϕ + V ϕ (1)

where m is the reduced mass and V the interatomic po-
tential. In the case of low-energy collisions, as governing
the interparticle interactions in ultracold atomic gases,
the equation may be simplified, since contributions to the
scattering amplitude for angular momenta l > 0 are nor-
mally negligible [2] and one can restrict oneself to the case
l = 0. In addition, we can put E = 0, being interested in
the scattering length ascatt only and not in quantities like
e.g. the effective range. These considerations lead together
with the substitution ϕ := rf (r) for the radial function to

d2

dr2
f =

2m

�2
V f := vf (2)

where f has to satisfy the boundary condition f(0) = 0.
Taking into account the asymptotic behaviour

f(r) →
r→∞ Ar + B (3)
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the (zero-energy s-wave) scattering length ascatt follows as

ascatt = −B

A
. (4)

The sign of ascatt as the central quantity in low-energy
scattering determines whether the interaction may be
modelled by a repulsive (ascatt > 0) or an at-
tracting (ascatt < 0) pseudopotential Vpseudo =
ascatt

2π�
2

m δ(r) ∂
∂rr [6,7]. The scattering cross section σ is

given in this approximation as σ = 4πa2
scatt.

The interatomic potential V is a function of the sepa-
ration r of the two centers of mass. At short distances, this
potential may not even be definable [2], but in the limit
r → ∞ it should be well approximated by the lowest-order
van der Waals interaction −C6/r6 as the leading term of
an expansion of the long-range part of V in inverse pow-
ers of r [8]. At smaller distances there is a repulsive core
which, in the familiar Lennard-Jones potential described
by a term ∼r−12, usually is modelled by forms ∼rαe−βr,
cf. [9–11].

As far as analytical solutions of the zero-energy
Schrödinger equation are concerned, only one van der
Waals-like potential seems to have been considered so far;
it is of the form −Cn/rn (in particular for the van der
Waals potential, n = 6) for r > rcut and V (r) = ∞ for
r < rcut; for details see [9]. The main drawback of this
model is the fact that there are no straight physical argu-
ments where to place the cutoff radius rcut. On the other
hand, for more realistic potentials the wave function has
to be calculated numerically and it is not easy to see how
the scattering length depends on relevant potential pa-
rameters, e.g. the depth of the potential or the position of
its minimum.

We present here a simple but nontrivial and realistic
potential with two parameters. It not only allows for exact
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Fig. 1. Potential v/u for n = 6.

solutions for the scattering length but also, in addition,
leads to very simple expressions for the scattering length
by which analytical conclusions are possible. In spite of
its simplicity, the results for this model agree well with
experimental data as shown for the case of Rb85 and Rb87.

All values are given in atomic units (a.u.), if not stated
otherwise.

2 The potential and the scattering length

We consider here the potential of the Lennard-Jones type

v(r) = u

[(r0

r

)2n−2

−
(r0

r

)n
]

(5)

where n is not restricted to natural numbers. An example
(n = 6) is shown in Figure 1. Note that the usual Lennard-
Jones potential exhibits the exponents 12 and 6, or more
generally 2n and n. At large distances v falls off �− r−n

with n = 4 for the interaction between an atom and an
ion, n = 6 for neutral atoms and n = 7 for the Casimir-
Polder potential between two neutral polarizable atoms.

The potential is zero for r = r0 and achieves its mini-
mum vmin = −u n−2

2n−2 ( n
2n−2 )

n
n−2 at rmin = (2n−2

n )
1

n−2 r0.
The general solution of the radial equation (2) is

given by

f(r) = Ce−
1
2 zU (α, β, z) + De−

1
2 zM (α, β, z) (6)

with

α =
−r0

√
u + n − 1

2n − 4
, β =

n − 1
n − 2

, z =
2r0

√
u

n − 2

(r0

r

)n−2

(7)
C and D are integration constants, and the Kummer func-
tions U (α, β, z) and M (α, β, z) are defined as in [12]. In

order to derive the scattering length we take into ac-
count the condition f(0) = 0 and the asymptotic be-
haviour of the Kummer functions. The condition f(0) = 0
requires D = 0 since for z → ∞ (r → 0) we have
M (α, β, z) ∼ zα−βez. The remaining Kummer function
U (α, β, z) may be expressed as

U (α, β, z) =
π

sin πβ

[
M (α, β, z)

Γ (1 + α − β)Γ (β)

−z1−β M (1 + α − β, 2 − β, z)
Γ (α) Γ (2 − β)

]
. (8)

For r → ∞ (z → 0) we use the series expansion

M (α, β, z) = 1 +
α

β
z +

α (α + 1)
β (β + 1)

z2 + . . . (9)

In this way, we arrive for U (α, β, z) at the expression

U (α, β, z) =
r→∞

π

sinπβ

[
− r0

Γ (α) Γ (2 − β)

(
2x

n − 2

) 1
n−2

r

+
1

Γ (1 + α − β) Γ (β)
+ O

(
1

rn−1

)]
(10)

where we have introduced the short-hand notation
x := r0

√
u. The final result reads

ascatt = r0

(
2x

n − 2

) 1
n−2

Γ

(−x + n − 1
2n − 4

)

Γ

(−x + n − 3
2n − 4

)
Γ

(
n − 3
n − 2

)

Γ

(
n − 1
n − 2

) .

(11)
For the cases n = 4 and n = 6, the scattering length is
shown in Figures 2 and 3. Note the different scales.

With (11), we have at our disposal a very simple and
compact expression for the scattering length. We point
out some of its properties.

(1) It is well-known that the constant cross section limit
at zero energy is valid only for the potentials falling off
faster than r−3 [13]. This is reflected by the fact that
the scattering length goes to infinity when n → 3+.

(2) Apart from the multiplicative factor r0, the scattering
length depends on two parameters only, namely n and
x. In particular, this holds for the position of the poles
and zeros. This fact allows for quite precise statements
about the potential parameters especially in the case if
scattering lengths are available for different isotopes,
as shown below for 85Rb and 87Rb.

(3) Poles and zeros of the scattering length are given by
the poles of Γ (−x+n−1

2n−4 ) and of Γ (−x+n−3
2n−4 ), respec-

tively. Poles of ascatt occur at

xpole = (2n − 4)Nb + n − 1; Nb = 0, 1, 2, . . . (12)

where Nb denotes the number of bound states; there
are Nb bound states for (2n − 4) (Nb − 1) + n − 1 <
x < (2n− 4)Nb + n − 1. Zeros of ascatt occur at

xzero = (2n − 4)M + n − 3; M = 0, 1, 2, . . . (13)
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Fig. 2. Scattering length ascatt/r0 in dependence of the vari-
able x = r0

√
u for the case n = 6. The dashed lines mark the

positions of the poles.

Fig. 3. Scattering length ascatt/r0 in dependence of the vari-
able x = r0

√
u for the case n = 6. The dashed lines mark the

positions of the poles.

(4) The relative proportion of positive and negative val-
ues of ascatt is given by n−3

n−2 and 1
n−2 . For n = 4,

we have an equipartition of positive and negative val-
ues of ascatt, whereas for n = 6, positive values occur
three times more often than negative ones. Similar
conclusions hold for a potential described by an in-
finitely high hard-core plus long range r−6 [8] and for

the semiclassical approximation of a general potential
with long range r−6 [9]. See also Figures 2 and 3.

(5) If x happens to lie in the neighbourhood of a pole, any
minor uncertainty in the shape of the potential can
easily provoke big changes in the scattering length.
On the other hand, this means that in this situation
the potential parameters may be fixed very precisely
even if the scattering length is known with a modest
degree of accuracy.

3 Exact solution and semiclassical
approximation

For potentials which fall off ∼−Cn/rn, a semiclassical ap-
proximation for the scattering length was presented by [9].
It reads

aWKB
scatt = r0 cos

(
π

n − 2

) (
r0
√

u

n − 2

) 2
n−2 Γ

(
n−3
n−2

)

Γ
(

n−1
n−2

)

×
[
1 − tan

π

n − 2
tan

(
Φ − π

2n − 4

)]
(14)

with the phase Φ =
∞∫
r0

√|v(r)|dr. For the potential (5) it

is given by
Φ =

π

2n − 4
r0

√
u. (15)

Because of E = 0 the classical turning point r0 coincides
with the zero of the potential (5). Note that with (15) the
poles and zeros of aWKB

scatt are exactly the same as for ascatt

as given in equations (12, 13).
Let us compare the two scattering lengths aWKB

scatt and
ascatt. With equation (11) it follows with x = r0

√
u:

ξ :=
aWKB

scatt

ascatt
=

(
x

2n− 4

) 1
n−2 x − n + 1

x − n + 3

Γ
(

x−n+1
2n−4

)

Γ
(

x−n+3
2n−4

) .

(16)
Obviously, ξ → 0 for x → 0 whereas for x → ∞ we have

ξ =
x→∞ 1 − (n − 1) (n − 3)

6 (n − 2)
1
x2

+ O

(
1
x3

)
. (17)

According to the last equation, the ratio ξ differs from 1
more than 1% if x � 10

√
(n−1)(n−3)

6(n−2) . On the other hand,
the first singularity in ascatt occurs at x = 3n − 5, see
equation (12). Since 10

√
(n−1)(n−3)

6(n−2) < 3n − 5 for n > 3,

one can conclude that ascatt and aWKB
scatt are practically

identical if one or more bound states exist.

4 Comparing the potential with existing data

In this section, we check to which extent the assumed
parametrization (5) of the interaction potential is com-
patible with known experimental data for heavy alkalis,
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Fig. 4. Comparison of data points from [14] with the potential
V (r) for Rb2

(
3Σ+

u

)
for n = 6 and the parameters S1 =(

11.2, 9.46 × 10−4
)

and S2 =
(
11.4, 9.65 × 10−4

)
(dashed).

which are favourite atomic species for the production of
Bose-Einstein condensates [8].

Numerically computed values for the interatomic po-
tential are found e.g. in [14] where tables for the en-
ergy curves of some alkali diatomics are given. We choose
Rb2

(
3Σ+

u

)
as an illustrative example. Interpolating the

lowest four data points of [14] leads to rmin ≈ 11.67 and
|Vmin| ≈ 9.3 × 10−4. However, the potential (5) fits bet-
ter for slightly different values. Since there is no unique
prescription how to fit these data in an optimal manner,
we use in the following two exemplary sets of parame-
ters (rmin, |Vmin|), namely S1 =

(
11.2, 9.46× 10−4

)
and

S2 =
(
11.4, 9.65× 10−4

)
, as shown in Figure 4. With the

first set the potential (5) fits somewhat better for smaller,
with the second for medium values of r.

Whereas the correspondence is quite satisfying for
r � 10, it is seen that the potential is too steep for smaller
r. However, one may expect that the details of the poten-
tial in this region will not play a crucial role, since the
wave function is damped out in the region with positive
potential.

Another possibility to fix parameters of the poten-
tial (5) is furnished by the experimentally determined val-
ues of the dispersion coefficient C6, as given e.g. in [10]
and [11] by 4619 � C6 � 4635 and 4698 � C6 � 4703.
Taking into account the equation C6 = 2.5 |Vmin| r6

min, we
get for S1 and S2 the dispersion coefficients C6 = 4668
and 5295. The last value is somewhat too large, but this
should not be overinterpreted since due to the high expo-
nent in r6

min the coefficient C6 depends very sensitively on
the precise value of rmin.

Finally, for given (rmin, Vmin) the number of bound
states Nb may be calculated by means of equation (12).
For S1 one arrives at 34/35 bound states for 85Rb/87Rb.
For S2 we have with 35/36 the same result as given in [10].
In [11] one finds 40/41; however, these high values are out
of reach for the potential (5) since the number of bound
states is restricted to 33 ≤ Nb ≤ 37 for 85Rb on condition
that the quite reasonable inequalities 11 < rmin < 12 and
9 × 10−4 < |Vmin| < 10−3 hold; cf. Figure 4.

5 Comparing the scattering length
with existing data

We now check if the scattering length (11) is compatible
with existing data, confining ourselves to the discussion
of the triplet scattering length of 85Rb and 87Rb. The
masses are m85 = 84.912 amu and m87 = 86.909 amu
as given by [15]. For n = 6, the mass-dependent vari-
able x = r0

√
u in (11) reads x = 5/

√
6rmin

√
2m |Vmin|

where m is the reduced mass. Introducing the notations
x85 and x87, we have x85 = 803.08rmin

√|Vmin| and x87 =
812.47rmin

√|Vmin|.
In the literature, there exist different values for the

scattering lengths. In e.g. [16] one finds −520 < a85
scatt <

−315 and 101 < a87
scatt < 108, in [10] −1200 < a85

scatt <
−324 and 107 < a87

scatt < 119 and in [11] −388 < a85
scatt <

−387 and 98.98 < a87
scatt < 98.99. For our model, the

data set S1 leads to a85
scatt = −480 and a87

scatt = 116, and
the data set S2 to a85

scatt = −255 and a87
scatt = 126. The

agreement of these results with the experimental data is
satisfying, all the more since, due to the neighbouring sin-
gularity, the gradients of the scattering amplitude are very
large which results in a numerically quite delicate situa-
tion.

To get more information, we take into account in a first
step just the structure of the given data and, in a second
step, the actual numerical values.

In the first step we argue as follows: since the experi-
mentally given values of the scattering length for 85Rb are
large negative and for 87Rb large positive numbers and in
view of the small mass difference between the two isotopes,
it is reasonable to assume that x85 has to lie between a
zero and the following pole, and x87 = 1.0117x85 between
this pole and the next zero of the scattering length; cf.
Figure 3. This leads to the two inequalities [I1] 8Nb + 3 <
x85 < 8Nb+5 and [I2] 8Nb+5 < x87 < 8 (Nb + 1)+3 with
Nb and Nb + 1 bound states for 85Rb and 87Rb. Since for
21 ≤ Nb ≤ 63 [I1] is stronger than [I2] we arrive at

8Nb + 3
803.08

< rmin

√
|Vmin| <

8Nb + 5
803.08

(18)

which leads for instance to the conditions

Nb = 34 ⇒ 0.3424 < rmin

√
|Vmin| < 0.3449 (19)

Nb = 35 ⇒ 0.3524 < rmin

√
|Vmin| < 0.3549. (20)

Note that inequality (18), which confines the allowed
range of the potential parameters, holds irrespectively of
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Fig. 5. Points in the (rmin, |Vmin|)-plane for which the scat-
tering lengths fulfill inequalities 21). The lines are the bounds
given in (18) for Nb = 33 . . . 37 (from left to right) where the
dashed lines mark the lower bounds.

the actual experimental values, provided that the interac-
tion may described by the potential (5). For our parameter
set S1 with Nb = 34 we have rmin

√|Vmin| = 0.3445 and
for S2 with Nb = 35 we have rmin

√|Vmin| = 0.3541.
In the second step we take into account the actual

numerical ranges for ascatt as given above. Again, we con-
fine the considerations to the ranges 11 < rmin < 12 and
9× 10−4 < |Vmin| < 10−3. For these ranges the scattering
lengths of the potential (5) cannot lie strictly in the in-
tervals given by [11,16], whereas the interval given by [10]
is accessible. In view of the simplicity of our potential (5)
we permit somewhat more generous limits, namely

−1200 ≤ a85
scatt ≤ −300; 96 ≤ a87

scatt ≤ 120. (21)

Together with the lines defined by (18), Figure 5 shows
some points in the (rmin, |Vmin|)-plane for which the scat-
tering lengths fulfill the inequalities (21).

In order to describe this behaviour more closely
we note that the ratio a85

scatt/a87
scatt depends only on

rmin

√|Vmin| and not on the single parameters. With the
inequalities (21) we have −12.5 ≤ a85

scatt/a87
scatt ≤ −2.5.

These last inequalities may be numerically solved for
rmin

√|Vmin| in the range 33 ≤ Nb ≤ 38. We note here
just the result for the two cases Nb = 34 and Nb = 35:

Nb = 34 ⇒ 0.3443 < rmin

√
|Vmin| < 0.3447 (22)

Nb = 35 ⇒ 0.3542 < rmin

√
|Vmin| < 0.3549. (23)

These inequalities are substantially sharper than (19),
(20). They form, as may be seen in Figure 6, the limiting

Fig. 6. Points in the (rmin, |Vmin|)-plane for which the scat-
tering lengths fulfill inequalities (21). The lines are the bounds
given as in (18) for Nb = 33 . . . 37 (from left to right). The
steeper lines stem from the inequality (24) for the dispersion
coefficient.

lines of the hits. In addition, Figure 6 shows the bounds
induced by the inequalities for the dispersion coefficient

4610 ≤ C6 ≤ 4710. (24)

In the case Nb = 34 (i.e. for S1) there exists a re-
gion where the potential parameters satisfy both in-
equalities (21) and (24). The four corner points of this
trapezoid have the coordinates (rmin, |Vmin|) = (11.161,
9.54 × 10−4), (11.168, 9.50 × 10−4), (11.221, 9.44× 10−4)
and (11.228, 9.40× 10−4).

Of course, we do not claim that we can fix the param-
eters of the potential (5) (let alone the real interaction)
which such an accuracy. The point is rather that with the
potential (5) we have a plain and simple model which, for
a natural choice of the parameter values, is able to fulfill
(at least approximately) all conditions imposed, though
the numerical conditions are quite delicate. This means
that our simple potential mirrors the essential features
of the real interaction at least for low energy scattering,
i.e. E = 0.

6 Conclusion

The parametrization (5) for an interatomic interaction po-
tential, which for n = 6 leads to a 6-10-potential and
thus differs from the usual 6-12-Lennard-Jones form by
a somewhat softer core, allows for an exact analytical de-
termination of the s-wave scattering length, as given by
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equation (11). For the strongly polarizable heavy alkali
atoms, which are characterized by a large van der Waals
coefficient C6 and, correspondingly, give rise to interaction
potentials with a substantial number of bound states, the
assumed form (5) is well compatible with experimental
data. It is hoped that the availability of an exact expres-
sion for a realistic, nontrivial interaction potential will be
found useful in other cases as well.

The author thanks Martin Holthaus for providing support and
helpful discussions.
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